104th New England Complex Fluids Workshop

Brandeis University, Shapiro Campus Center Theater September 19, 2025

9:00 - 9:15 AM	Registration: Shapiro Theater
9:15 - 9:55 AM	Research Talk: Shapiro Theater (30 min talk + 10 min discussion) Mathias Kolle (MIT)
9:55 - 10:15 AM	Coffee, Room 236
10:15 – 10:55 AM	Research Talk: Shapiro Theater (30 min talk + 10 min discussion) Greg Grason (UMass-Amherst)
10:55– 12:00 AM	Soundbite session I: Shapiro Theater
12:00 AM – 1:20 PM	Lunch and informal discussions: Shapiro Center, Room 236
1:20 - 2:00 PM	Research Talk: Shapiro Theater (30 min talk + 10 min discussion) Joyce Y. Wong (Boston University)
2:00 – 3:00 PM	soundbite: Shapiro Campus Center
3:00 – 3:20 PM	Coffee, Registration table outside the theater
3:20 - 4:00 PM	Research Talk : Shapiro Theater (30 min talk + 10 min discussion) Duane Juang (Brandeis University)
4:00pm	Social and Pizza (Abelson 333)

Registration (free) required: https://complexfluids.org

Registration deadline: Wednesday 8am, September 17, 2025

Sponsored by: The Brandeis MRSEC, E ink, the Brandeis Physics Department, and the Office of the Vice Provost for Undergraduate Affairs

Session 1

1. Akshit Aggarwal Brandeis University

Developing strategies to control the flows and densities of 3D active isotropic fluids

2. Mehrdad Ahmadinejad University of Vermont

Multiscale modeling of nanoparticle transport in viscoelastic hydrogels

3. Hunter Seyforth— Brandeis University

Two-dimensional crystallization of polymer-mediated oppositely charged colloids

4. Arkaprabha Basu - Harvard University

Phase separation and wetting in vimentin filament assembly

5. Samuel Nielsen — Brandeis University

Reconfiguration of DNA-origami dimers using DNA linkers

6. Wei-Ting Chang — Northeastern University

Production of scalable tea-derived polyphenols nanoparticles as food-safe colorants

7. Caroline Martin— Brandeis University

Fight or flight: response of large, fused cells to crowding in MDCK tissue

8. Thomas Krug— Harvard SEAS & Physics

Endoplasmic reticulum fluctuations are actively and thermally driven

9. Owen Dunton— Wesleyan University

Modeling the onset of a Peierls distortion in amorphous Ge-Sb alloys using an ML potential

10. Jose E. Flores — **Tufts University**

Shape optimization: simulating tactoids in liquid crystal nanocomposites

11. Kaitlyn Flynn— Northeastern University

Protein-pigment interactions drive granule formation in cephalopod

12. Sara Ghanbarpour Mamaghani— UMass Boston

Mechanical characterization of cancer cell spheroids using an extensional flow microfluidic device

13. Mohammad Jabarifar— University of Vermont

Drag and lift on raised particles in particulate beds and vortex-induced resuspension

14. Delace Jia — MIT

Fluorescence confocal polarizing microscopy for 3D characterization of dynamic anisotropic materials

15. Benjamin Thorne — Harvard University

Elasticity of emulsion-in-fiber network composites

16. Raphael Kay— Harvard University

Fluid instabilities for thermoregulatory homeostasis

17. Hirunika Kumarasinghe— Tufts University

Silk-based cell encapsulation as a shield during cell therapy

18. Arnaud Lazarus — MIT

Wavenumber lock-in in buckled elastic structures: an analogue to parametric instabilities

19. Cheng Long — Harvard University

Theory of liquid crystal ground states on hyperbolic cones

Session 2

1. Yeling Luo— **Boston University**

Bridging in vivo tissues and synthetic phantoms: microbubble stability in peritoneal fluid and targeted binding with fibrin gels

2. Madhurima Roy — **Brandeis University**

Controlling polymorphism in DNA origami assemblies of a Schwarz P-surface

3. Jack Barotta, Brown University

Wave-mediated capillary assembly on a fluid interface

4. Adrielle Cusi— Brandeis University

Actin polymerization in DNA nanostar biomimetic condensates

5. Rejoy Mathew — **UMass Amherst**

Engineering self-limiting structures from warped jigsaw particles at finite temperature

6. Mason Miguel— Brandeis University

Internal reorganization of syncytia post-fusion

7. Prasanna More— **UMass Amherst**

Colloidal sessile suspension feeders for bioinspired collective hydrodynamics

8. Ian Murphy — Brandeis University

How bond-rigidity affects the self-assembly of 2D DNA-origami kagome lattices

9. Myeonggon Park — Brandeis University

Engineering DNA origami crystallization: how subunit symmetry and crystal complexity govern nucleation, growth, and habit formation

10. Rachael Skye — Wellesley College

Structure in a self-limiting cluster fluid

11. Francesca Soddu— **Harvard University, UC Berkeley, University of Oxford**Optical signatures reveal a multi-step pathway of cyanobacterial cell lysis

12. Naren Sundararajan — Brandeis University

Computational modeling of viral capsid assembly coupled to phase separation

13. Bella Aizenberg, Brandeis University

DNA origami stability in monovalent-divalent salt mixtures

14. Sasha Toole — Brandeis University

Control of contractile active materials using optically-induced force generation

15. Nadab Wubshet — Harvard University

Differential mechanics of the vimentin juxtanuclear cage

16. Thomas Videbaek — Brandeis University

Self-limited stacks through programmable frustration

17. Xu Zhang— MIT

Bursting of dense suspension bubbles

18. Siriui Liu — Brandeis University

Taming polymorphism of tubule self-assembly using seeded growth

19. Sarah Dennis — Brandeis University

Models in extended lubrication theory